Hamiltonicity of 3-Arc Graphs
نویسندگان
چکیده
An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v, u, x, y) of vertices such that both (v, u, x) and (u, x, y) are paths of length two. The 3-arc graph of a graph G is defined to have vertices the arcs of G such that two arcs uv, xy are adjacent if and only if (v, u, x, y) is a 3-arc of G. In this paper we prove that any connected 3-arc graph is Hamiltonian, and all iterative 3-arc graphs of any connected graph of minimum degree at least three are Hamiltonian. As a consequence we obtain that if a vertex-transitive graph is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three, then it is Hamiltonian. This confirms the well known conjecture, that all vertex-transitive graphs with finitely many exceptions are Hamiltonian, for a large family of vertex-transitive graphs. We also prove that if a graph with at least four vertices is Hamilton-connected, then so are its iterative 3-arc graphs.
منابع مشابه
Deciding Graph non-Hamiltonicity via a Closure Algorithm
We present a matching and LP based heuristic algorithm that decides graph non-Hamiltonicity. Each of the n! Hamilton cycles in a complete directed graph on n + 1 vertices corresponds with each of the n! n-permutation matrices P, such that pu,i = 1 if and only if the ith arc in a cycle enters vertex u, starting and ending at vertex n + 1. A graph instance (G) is initially coded as exclusion set ...
متن کاملHamiltonicity is Hard in Thin or Polygonal Grid Graphs, but Easy in Thin Polygonal Grid Graphs
In 2007, Arkin et al. [3] initiated a systematic study of the complexity of the Hamiltonian cycle problem on square, triangular, or hexagonal grid graphs, restricted to polygonal, thin, superthin, degree-bounded, or solid grid graphs. They solved many combinations of these problems, proving them either polynomially solvable or NP-complete, but left three combinations open. In this paper, we pro...
متن کاملOn Eulerianity and Hamiltonicity in Annihilating-ideal Graphs
Let $R$ be a commutative ring with identity, and $ mathrm{A}(R) $ be the set of ideals with non-zero annihilator. The annihilating-ideal graph of $ R $ is defined as the graph $AG(R)$ with the vertex set $ mathrm{A}(R)^{*}=mathrm{A}(R)setminuslbrace 0rbrace $ and two distinct vertices $ I $ and $ J $ are adjacent if and only if $ IJ=0 $. In this paper, conditions under which $AG(R)$ is either E...
متن کاملOn Generalizations of the Petersen Graph and the Coxeter Graph
In this note we consider two related infinite families of graphs, which generalize the Petersen and the Coxeter graph. The main result proves that these graphs are cores. It is determined which of these graphs are vertex/edge/arc-transitive or distance-regular. Girths and odd girths are computed. A problem on hamiltonicity is posed.
متن کاملAn Inductive Construction for Hamilton Cycles in Kneser Graphs
The Kneser graph K(n, r) has as vertices all r-subsets of an n-set with two vertices adjacent if the corresponding subsets are disjoint. It is conjectured that, except for K(5, 2), these graphs are Hamiltonian for all n ≥ 2r +1. In this note we describe an inductive construction which relates Hamiltonicity of K(2r + 2s, r) to Hamiltonicity of K(2r′+s, r′). This shows (among other things) that H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphs and Combinatorics
دوره 30 شماره
صفحات -
تاریخ انتشار 2014